首页> 外文OA文献 >Running over rough terrain reveals limb control for intrinsic stability
【2h】

Running over rough terrain reveals limb control for intrinsic stability

机译:在崎terrain的地形上奔跑揭示了肢体控制的固有稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass–spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass–spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass–spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.
机译:有腿动物通常会以敏捷和稳定的方式穿越崎,、难以预测的地形,这是任何人工机器都无法比拟的。但是,我们对动物如何实现这一目标知之甚少。当前的知识主要限于对平稳运动的研究。这些研究揭示了陆生动物稳定运动所使用的基本机制。但是,尚不清楚这些模型是否为用于在崎terrain地形上实现动态稳定性的神经肌肉和机械策略提供适当的框架。摄动实验揭示了这个问题,揭示了力学与神经肌肉控制之间的相互作用。我们测量了在意外的地形下降下奔跑的头盔式珍珠鸡(Numida meleagris)的肢体力学,并将其对质量弹簧跑步模型的预测进行了比较。肢体接触角的调节可解释扰动后肢体相态姿势的80%变化。出人意料的是,尽管肢体刚度变化很大,但不影响反应。该结果与质量-弹簧模型相符,尽管它与先前关于在顺应性不同的表面上奔跑的人类的发现有所不同。但是,珍珠鸡有时会由于肢体的姿势依赖性工作表现而偏离质量弹簧的动力学,从而导致扰动后吸收大量能量。这种与姿势有关的致动使动物能够吸收能量并在突然的底物掉落时保持所需的速度。因此,取决于姿势的肢体工作性能可在崎rough的地形上提供固有的速度控制。这些发现凸显了简单的机械模型如何扩展到不稳定条件,从而为运动的神经肌肉控制以及动态稳定的有腿机器人和修复设备的设计提供了基本见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号